
Polarities and Trialities in Geometry

Let X = (P,L, I) be a finite connected incidence system such that each
element of P (resp. ly, of L) is incident with s + 1 elements of L (resp. ly, of
P ), s ≥ 2. Elements of P are called points of X and those of L are called lines
of X.

1 Polarities

A
polarityof

Xis, aninvolutory, incidencepreserving, bijectionτ of P ∪L which interchanges
P and L.

Clearly, a polarity is unique, up to an isomorphism of the incidence system
X. Recall that an automorphism of X is a pair (ϕ,ψ) where ϕ is a bijection of
P and ψ is a bijection of L such that, for (x, y) ∈ P × L, xIy if, and only if,
ϕ (x) Iψ (y).

If s = 1, X is a regular graph of degree 2 with point set P and line set
L . (Its connected components are cycles on even number of verticies.) Not
necessarily a partial geometry.

Existence of τ implies that the number of elements of L containing two
distinct elements x and y of P is equal to the number of elements of P incident
with xτ and yτ of L.

Let O (resp. ly S) be the set of all absolute points (resp. ly absolute lines)
of τ . That is, O = {x ∈ P : x ∈ xτ} and S = {l ∈ L : lτ ∈ l}.Give example
when O,S or both can be empty.

1.1 Polarities of Generalized polygons

1.1.1 Polarities of Projective planes

1.1.2 polarities of generalized quadrangles

1.1.3 polarities of generalized hexagons

1.2 Polarities of metasymplectic spaces (Geometries of
type F4)

1.3 Polarities of geometries of type E6

τOSOSPL[ If Xp ∈ Opτ Sp.Then, isabijectionbetweenand.Notethat(so, also)couldbeemptyorequalto(so, ).isapartiallinearspace, then, for, istheonlyelementofincidentwith, anddually.
We say that O is an ovoid in X if each maximal subspace of X which

is isotropic with respect to τ contains a unique element of O. We

say that S is a spread in X if ?? Are the set Oof isotropic points
and the set L of isotropic lines of a polarity always ovoids, spreads
in this sense? Study the polarity and the bilinear maps and the polarity of
the code associated with subspaces in the geometry defined by the lines of an

1



incidence system with a given polarity. If X is a partial linear space, then for
p ∈ O, pτ is the only element of S incident with p; and dually. Examples of
polarities of interest are of :

1. The incidence system Prk,n−k−1 (n, q) = (Pk (n, q) ,Pn−k−1 (n, q) , Ir) ,0 ≤
k ≤ [n/2] − 1 and −1 ≤ r ≤ k, where Ps (n, q) is the set of s−flats in
the the projective space P (n, q) of dimension n over Fq with a k−flat A
defined to be Ir- incident with a (n− k − 1)−flat B if A∩B is an r−flat.
Any polarity of P (n, q) induces a polarity on each Prk,n−k−1 (n, q). For
a given r, does there exist any other polarities? What is
the relation between the polarities of P (n, q) and those of
P rk,n−k−1 (n, q).

2. The other finite lie incidence structures;

3. finite projective planes;

4. finite symmetric designs;

5. the generalized quadrangle W (22n+1), n ≥ 1;

6. the generalized hexagon H(32n+1), n ≥ 1;

7. the metasymplectic spaces;

8. Any interesting examples in dual polar spaces, parapolar spaces,
lie incidence systems,

Remark 1 A feature of interest in Example 5 (resp. ly Example 6; the casen = 8
and p = 2 of Example 1) is that O is an ovoid of W (22n+1) (resp. ly of H(32n+1); ?? of
Ω(4, 2e) -geometry) and that the characteristic functions of the tangent planes
to this ovoid is a basis for the p− ary code generated by the hyperplanes of the
incidence system. Also, there is a triality associated with the Ω(4, 2e) -geometry.
What is its relation to the incidence system?

1.3.1

Polarities of a symmetric (v,k, λ)- designs (P,B)
For distinct points x,y, the line xy is the intersection of all blocks containing

x and y. Two points are on exactly one line and a line of size (v 2212 3BB

)/(k 2212 3BB ) has nonempty intersection with each block [Dembowski and
Wagner, Arch. Math. 11 (1960) 465-469]. Assume that D admits a null polarity

3C4 ; that is, x 2208 x 3C4 for each point x. We say that a line is singular

if it contains distinct points x,y with y 2208 x 3C4 ; and nonsingular other-

wise. If x 2062 y is a singular line and x 2260 z 2208 x 2062 y, then z 2208

x 27C2 2229 y 27C2 , and so, x,z 2286 z 27C2 , y 2208 x 2062 y=x 2062

z 2286 z 27C2 . The equality x 2062 y=x 2062 z holds because: every block
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containing x and y contains z also and so, the blocks containing {x,y} and
{x,z} are the same. Any line in D is either singular or nonsingular. Examples:
(1) Projective geometries P 2062 G 2061 (d,q)(2) Highman’s orthogonal sym-
metric designs having the same parameters as in (1): Points are the singular
points of a d-dimensional orthogonal Fq-space with both d and q odd; its blocks
correspond to the hyperplanes x 27C2 . 1. (Dembowski-Wagner) The projec-

tive space is the only symmetric design such that all lines have size (v 2212

3BB )/(k 2212 3BB ). 2. (Kantor) Let D be a symmetric design admitting

null polarity. (a) If all singular lines have size (v 2212 3BB )/(k 2212 3BB

)> 3BB , then D is either a projective space or an orthogonal design. (b) If

all nonsingular lines have size (v 2212 3BB )/(k 2212 3BB ), then D is a
projective space. Survey all known examples1. Which projective planes admit
polarities? Desarguesian planes do and the polarities are either orthogonal or
unitary. 2. For Desarguesian spaces, polarities exist and they are either or-
thogonal, alternating or unitary. 3. For a polarity of a Desarguesian projective
plane, the set of absolute points is nonempty. It has q+1 points if the polarity is
orthogonal and s3+1 points if the polarity is unitary and q=s2. S 2062 t 2062

a 2062 bP 2062 G 2062 L3 2061 (q) 2061 (Conic)=P 2062 G 2062 L2 2061

(q)={y 21A6 (a 2062 y+b)/c 2062 y+d:a 2062 d 2212 b 2062 c 2260 0}.
Theorem 2 Let 393 be a projective plane of order q and 3B8 be a polarity of

393 . Then, the number N 3B8 of absolute points with respect to 3B8 satisfy

q+1 2264 N 3B8 2264 q 2062 q+1. (i) If N 3B8 =q+1, the set of absolute

points is an oval if q is odd and the absolute points is collinear if q is even. (ii)

If N 3B8 =

+q
√
q, the set of absolute points, with sets of points incident with secant lines,

form a unital.
Also, if q is not a square, then Nθ = q + 1.

Proof. ...

Definition 3 A unital of order q is a set of q3 + 1 points having q2
(
q3 + 1

)
/2

distinguished subsets containing q + 1 elements each, called blocks, such that
each block is determined by any 2 of its points.

Question: Determine the structure of the subcode of Fq-code of lines of a
projective plane π of order q generated by conics of π if q odd and hyperovals of
π if q is even.

Problem 4 For l ∈ L, can we say anything in general about |l ∩ O|?

1. Let X = (P,L, I) be a finite connected incidence system such that each
element of P (resp. ly, of L) is incident with s + 1 elements of L (resp. ly, of
P ), s ≥ 2. If s = 1, X is a regular graph of degree 2 with point set P and line
set L . (Its connected components are cycles on even number of verticies.) Not
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necessarily a partial geometry Assume that X admits a polarity; that is,
an involutive, incidence preserving, bijection τ of P ∪ L which interchanges P
and L. Clearly, a polarity is unique up to an isomorphism of the incidence
system X. Existence of τ implies that the number of elements of L containing
two distinct points x and y is equal to the number of elements of P incident
with xτ and yτof L. Recall that an automorphism of X is a pair (ϕ,ψ) where
ϕ is a bijection of P and ψ is a bijection of L such that, for (x, y) ∈ P × L,
xIy if, and only if, ϕ (x) Iψ (y). Let O (resp. ly S) be the set of all absolute
points (resp. ly absolute lines) of τ . That is, O = {x ∈ P : x ∈ xτ} and
S= {l ∈ L : lτ ∈ l}. Then, τ is a bijection between O and S. Note that O (so,
S also) could be empty or equal to P (so, L).[Give examples when O (so, S
also) are empty.] If X is a partial linear space, then, for p ∈ O, pτ is the
only element of S incident with p, and dually.

We say that O is an ovoid in X if each maximal subspace of X which

is isotropic with respect to τ contains a unique element of O. We

say that S is a spread in X if ?? Are the set Oof isotropic points
and the set L of isotropic lines of a polarity always ovoids, spreads
in this sense? Study the polarity and the bilinear maps and the polarity of
the code associated with subspaces in the geometry defined by the lines of an
incidence system with a given polarity. If X is a partial linear space, then for
p ∈ O, pτ is the only element of S incident with p; and dually. Examples of
polarities of interest are of :

1. The incidence system Prk,n−k−1 (n, q) = (Pk (n, q) ,Pn−k−1 (n, q) , Ir) ,0 ≤
k ≤ [n/2] − 1 and −1 ≤ r ≤ k, where Ps (n, q) is the set of s−flats in
the the projective space P (n, q) of dimension n over Fq with a k−flat A
defined to be Ir- incident with a (n− k − 1)−flat B if A∩B is an r−flat.
Any polarity of P (n, q) induces a polarity on each Prk,n−k−1 (n, q). For
a given r, does there exist any other polarities? What is
the relation between the polarities of P (n, q) and those of
P rk,n−k−1 (n, q).

2. The other finite lie incidence structures;

3. finite projective planes;

4. finite symmetric designs;

5. the generalized quadrangle W (22n+1), n ≥ 1;

6. the generalized hexagon H(32n+1), n ≥ 1;

7. the metasymplectic spaces;

8. Any interesting examples in dual polar spaces, parapolar spaces,
lie incidence systems,

Remark 5 A feature of interest in Example 5 (resp. ly Example 6; the case n = 8
and p = 2 of Example 1) is that O is an ovoid of W (22n+1) (resp. ly of H(32n+1); ?? of
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Ω(4, 2e) -geometry) and that the characteristic functions of the tangent planes
to this ovoid is a basis for the p− ary code generated by the hyperplanes of the
incidence system. Also, there is a triality associated with the Ω(4, 2e) -geometry.
What is its relation to the incidence system?

Polarities of symmetric designs
D be a symmetric 2− (v, k, λ) design.
For distinct points x, y, the line xy is the intersection of all blocks contains x

and y. Two points are on exactly one line and a line of size (v − λ) / (k − λ) has
nonempty intersection with each block [Dembowski and Wagner, Arch. Math.
11 (1960) 465-469].

Assume that D admits a null polarity τ ; that is, x ∈ xτ for each point x.
We say that a line is singular if it contains distinct points x, y with y ∈ xτ ; and
nonsingular otherwise.

If xy is a singular line and x 6= z ∈ xy, then z ∈ x⊥∩y⊥, and so, x, z ⊆ z⊥,
y ∈ xy = xz ⊆ z⊥. The equality xy = xz holds because: every block containing
x and y contains z also and so, the blocks containing {x, y} and {x, z} are the
same.

Any line in D is either singular or nonsingular.
Examples: (1) Projective geometries PG (d, q)
(2) Highman’s orthogonal symmetric designs having the same parameters as

in (1): Points are the singular points of a d-dimensional orthogonal Fq-space
with both d and q odd; its blocks correspond to the hyperplanes x⊥.

1. (Dembowski-Wagner) The projective space is the only symmetric design
such that all lines have size (v − λ) / (k − λ).

2. (Kantor) Let D be a symmetric design admitting null polarity.
(a) If all singular lines have size (v − λ) / (k − λ) > λ, then D is either a

projective space or an orthogonal design.
(b) If all nonsingular lines have size (v − λ) / (k − λ), then D is a projective

space.
Survey all known examples
1. Which projective planes admit polarities?
Desarguesian planes do and the polarities are either orthogonal or unitary.
2. For Desarguesian spaces, polarities exist and they are either orthogonal,

alternating or unitary.
3. For a polarity of a Desarguesian projective plane, the set of absolute points

is nonempty. It has q + 1 points if the polarity is orthogonal and s3 + 1 points
if the polarity is unitary and q = s2.

StabPGL3(q)( Conic ) = PGL2 (q) = {y 7→ (ay + b) /cy + d : ad− bc 6= 0} .

Theorem 6 Let Γ be a projective plane of order q and θ be a polarity of Γ.
Then, the number Nθ of absolute points with respect to θ satisfy q + 1 ≤ Nθ ≤
q
√
q + 1.
(i) If Nθ = q + 1, the set of absolute points is an oval if q is odd and the

absolute points is collinear if q is even.
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(ii) If Nθ = 1 + q
√
q, the set of absolute points, with sets of points incident

with secant lines, form a unital.
Also, if q is not a square, then Nθ = q + 1.

Proof. ...

Definition 7 A unital of order q is a set of q3 + 1 points having q2
(
q3 + 1

)
/2

distinguished subsets containing q + 1 elements each, called blocks, such that
each block is determined by any 2 of its points.

Question: Determine the structure of the subcode of Fq-code of lines of a
projective plane π of order q generated by conics of π if q odd and hyperovals of
π if q is even.

Problem 8 For l ∈ L, can we say anything in general about |l ∩ O|?
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1. Buildings associated with F4, E6, E7, E8,
2 F4 explicitly and of known meta-

symplectic spaces.
2. Several realizations of F4 (As automorphisms of Jordan algebras of ex-

ceptional type; as Chevalley groups; as the automorphism group of the Cayley
plane).

3. Maximal subgroups of X and X ′, X ∈ {B2 (q) , G2 (q) , F4 (q)} in terms
of the associated geometry.

4. Does G admit a permutation representation such that, for an algebraic
number field K, A = K [X1, · · · , Xn]

G
is rational; that is, there exist f1, · · · , ft ∈

A such that A = K [f1, · · · , ft]?
5. Ovoids in metasymplectic spaces.
6. Conjugacy classes of elements of G and their identifications with geomet-

ric structures.
7. Geometries of type F4; local characterizations of buildings among geome-

tries of type F4 and metasymplectic spaces; Tits characterization of buildings of
type F4 among geometries of type F4.

8. Hirschfeld’s approach to Hamada’s conjecture applied to codes associated
with metasymplectic spaces.

9. Mason varieties for Sz
(
2k
)
, PSp

(
4, 2k

)
, F4

(
2k
)
, 2F4

(
2k
)
-modules; Car-

leson varieties and Kazhdan-Lusztig varieties.
10. Generalized Fitting submodules of the modules
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